

Training Outline

Nanotechnology

Aurora Technology Development Inc.

Nanotechnology

Course Outline

Unit 1: Introduction

- 1. **History (10 Hours)**
 - Overview of nanotechnology: Definition, history, and evolution
 - Key milestones and breakthroughs in nanotechnology
 - Societal demand and industry applications
 - Exercise: Group discussion on the future of nanotechnology
 - Q&A: 1 hour
- 2. **Applications and Theoretical Knowledge (15 Hours)**
 - Quantum mechanics: Concepts relevant to nanotechnology
 - Chemical principles: Bonding, reactions at the nanoscale
 - Mathematical foundations: Linear algebra, calculus applications
 - Exercise: Problem-solving session on quantum mechanics and chemistry
 - Q&A: 1 hour
- 3. **Nanomaterials (15 Hours)**
 - Types of nanomaterials: Fullerenes, nanoparticles, nanotubes
 - Synthesis methods: Chemical vapor deposition, sol-gel process
 - Properties: Optical, electrical, and mechanical properties
 - Characterization techniques: SEM, TEM, AFM
 - Exercise: Lab on synthesizing and characterizing nanomaterials
 - Q&A: 1 hour

- 4. **Applications Overview (10 Hours)**
 - Applications in medicine: Drug delivery, imaging, diagnostics
 - Applications in electronics: Transistors, sensors, quantum dots
 - Medical applications: Nanotechnology in diagnostics, drug delivery, imaging
 - Exercise: Case study analysis on different nanotechnology applications
 - Q&A: 1 hour

Unit 2: Nanofabrication Methods (80 Hours)

- 1. **Top-Down and Bottom-Up Techniques (20 Hours)**
 - Photolithography: Process and applications
 - Chemical vapor deposition (CVD): Techniques and uses
 - Physical vapor deposition (PVD): Methods and applications
 - Exercise: Demonstration of fabrication techniques
 - Q&A: 1 hour
- 2. **Self-Assembly and Lithography (20 Hours)**
 - Principles of self-assembly: Mechanisms and examples
 - Soft lithography: Techniques and applications
 - Nanoimprint lithography: Methods and uses
 - Exercise: Lab on self-assembly and soft lithography
 - Q&A: 1 hour

- 3. **Advanced Fabrication (20 Hours)**
 - Femtosecond laser ablation: Techniques and applications
 - Focused ion beam (FIB) machining: Methods and uses
 - Electron beam lithography: Process and applications
 - Exercise: Advanced fabrication techniques lab
 - Q&A: 1 hour
- 4. **Characterization and Quality Control (20 Hours)**
 - Characterization techniques: SEM, TEM, AFM, XRD
 - Quality control methods: Importance and implementation
 - Exercise: Lab on characterization techniques
 - Q&A: 1 hour

Tuition fee: \$9,850 per person